Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Isr Med Assoc J ; 18(6): 331-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27468525

RESUMO

BACKGROUND: Children dependent on gastrostomy tube feeding and those with extremely selective eating comprise the most challenging groups of early childhood eating disorders. We established, for the first time in Israel, a 3 week intensive weaning and treatment program for these patients based on the "Graz model." OBJECTIVES: To investigate the Graz model for tube weaning and for treating severe selective eating disorders in one center in Israel. METHODS: Pre-program assessment of patients' suitability to participate was performed 3 months prior to the study, and a treatment goal was set for each patient. The program included a multidisciplinary outpatient or inpatient 3 week treatment course. The major outcome measures were achievement of the target goal of complete or partial tube weaning for those with tube dependency, and expansion of the child's nutritional diversity for those with selective eating. RESULTS: Thirty-four children, 28 with tube dependency and 6 with selective eating, participated in four programs conducted over 24 months. Their mean age was 4.3 ± 0.37 years. Of all patients, 29 (85%) achieved the target goal (24 who were tube-dependent and 5 selective eaters). One patient was excluded due to aspiration pneumonia. After 6 months follow-up, 24 of 26 available patients (92%) maintained their target or improved. CONCLUSIONS: This intensive 3 week program was highly effective in weaning children with gastrostomy tube dependency and ameliorating severe selective eating. Preliminary evaluation of the family is necessary for completion of the program and achieving the child's personal goal, as are an experienced multidisciplinary team and the appropriate hospital setup, i.e., inpatient or outpatient.


Assuntos
Remoção de Dispositivo , Ingestão de Alimentos , Nutrição Enteral , Gastrostomia , Pneumonia Aspirativa , Complicações Pós-Operatórias/prevenção & controle , Apoio Social , Desmame , Pré-Escolar , Terapia Combinada , Remoção de Dispositivo/efeitos adversos , Remoção de Dispositivo/métodos , Remoção de Dispositivo/reabilitação , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Nutrição Enteral/métodos , Nutrição Enteral/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Feminino , Gastrostomia/instrumentação , Gastrostomia/métodos , Gastrostomia/reabilitação , Humanos , Israel , Masculino , Equipe de Assistência ao Paciente/organização & administração , Pneumonia Aspirativa/etiologia , Pneumonia Aspirativa/prevenção & controle , Avaliação de Programas e Projetos de Saúde , Estudos Retrospectivos
2.
EMBO J ; 23(4): 823-32, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-14765123

RESUMO

Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c-Jun N-terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus-end directed molecular motor) versus dynein (a minus-end directed molecular motor).


Assuntos
Cones de Crescimento/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Movimento Celular , Células Cultivadas , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Cones de Crescimento/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutagênese Sítio-Dirigida , Neuritos/fisiologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosforilação , Ligação Proteica , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...